Monatshefte für Chemie 118, 967-972 (1987)

Characterization of TICu₇S₄, a Crookesite Analogue

Short Communication

Rolf A. Berger *, a and Robert J. Sobott^b

 ^a Institute of Chemistry, University of Uppsala, S-751 21 Uppsala, Sweden
^b Institute of Mineralogy-Petrography, University of Heidelberg, D-6900 Heidelberg, Federal Republic of Germany

(Received 26 May 1987. Accepted 5 June 1987)

Previous claims of a compound TlCu₂S₅ are rejected. The true composition is TlCu₇S₄, the compound being isostructural with NH₄Cu₇S₄ and TlCu₇Se₄ (crookesite). The body-centred tetragonal cell (a = 10.1797 Å and c = 3.8585 Å) contains two formula units.

(Keywords: Thallium copper sulphide; Crystal structure)

Beschreibung von TICu₇S₄, einer dem Crookesit analogen Verbindung (Kurze Mitteilung)

Frühere Feststellungen, daß im pseudobinären System Tl₂S—Cu₂S eine Verbindung TlCu₂S₅ existiert, erwiesen sich als unzutreffend. Die korrekte Formel muß TlCu₂S₄ lauten. TlCu₇S₄ besitzt eine raumzentrierte tetragonale Elementarzelle (a = 10.1797 Å, c = 3.8585 Å; Z = 2) und ist isostrukturell mit NH₄Cu₇S₄ und TlCu₇Se₄ (Crookesit).

The system Tl—Cu—S has been investigated both from the point of view of crystallographically characterizing the phases and of finding their relationships. A phase diagram of the section Tl_2S —Cu₂S was proposed by *Mamedov* et al. [1] based on DTA, room-temperature magnetic susceptibilities and X-ray powder diffraction. Two intermediate phases were proposed, $Tl_2Cu_8S_5$ and TlCuS, both melting congruently. These phases were not properly characterized, and the published line diffraction patterns are at variance with the phase diagram.

A revision of the pseudo-binary phase diagram was proposed by *Abishov* et al. [2]. These workers confirmed that TlCuS melts congruently (689 K) but found two incongruently melting phases, TlCu₃S₂ (693 K) and TlCu₉S₅ (706 K).

A new attempt to clarify the situation along Tl_2S — Cu_2S tie-line was presented by *Sobott* [3]. His results, based on DTA and X-ray diffraction, agree in principle with those of *Abishov* et al. [2] but differ with respect to the incongruent melting temperatures of TlCu₃S₂ (683 K) and TlCu₉S₅ (734 K).

Further data on the ternary system were furnished by *Babanly* et al. [4–6], who also verified the phases TlCuS, TlCu₃S₂ and TlCu₉S₅. Unitcell data were previously presented for TlCuS [7] and TlCu₃S₂ [8].

Fig. 1. The X-ray density as a function of the molar ratio along the Tl_2S — Cu_2S tie-line. The curve is a guide to the eye. The filled circle corresponds with the erroneously given cubic cell of TlCu₉S₅ in Ref. [3]

However, Sobott [3], when interpreting his powder patterns, insufficiently considered the crystallographic data already available. Two of his published line diagrams are explained by the cells provided previously for TlCuS [7] and TlCu₃S₂ [8]. His third pattern, rather similar to that presented by *Mamedov* et al. [1] for Tl₂Cu₈S₅, was attributed to a cubic cell (a = 7.207 Å) containing two formula units of TlCu₉S₅. The theoretical density for this composition and cell choice (8.30 g/cm³) is much greater than expected considering the other phases along this tie-line, as illustrated in Fig. 1. Consequently, this cell or this composition had to be erroneous.

A key to the solution of this problem was found when the Tl—Cu— S and Tl—Cu—Se systems [9] were compared. Isostructural phases exist, such as (X = S, Se) TlCuX, TlCuX₂, TlCu₃X₂ and TlCu₄X₃. The tie-line Tl₂Se—Cu₂Se contains TlCuSe, TlCu₃Se₂, TlCu₅Se₃ and TlCu₇Se₄. The latter is tetragonal, but the axial ratio of the unit cell is such $(a/c \approx \sqrt{7})$ that many lines overlap, giving the pattern a cubic appearance,

Table 1. Crystallographic data of TlCu₇S₄. The least-squares refined cell parameters are a = 10.1797 (2) Å, c = 3.8585 (1) Å. The reflexions are presented as $Q = d^{-2} \text{ Å}^{-2}$. For the very weakest reflexions and those situated close to strong ones no accurate values could be determined. The indices *hkl* include non-equivalent *khl*-reflexions, and only their summed intensities could be measured. The individual intensity data were calculated with the Lazy Pulverix program using the positional parameters of NH₄Cu₇S₄

hk1	I(Obs)	I(Calc)	Q(Obs)	Q(Calc)	hkl	I(Obs)	I(Calc)	Q(Obs)	Q(Calc)
			x 10 ⁵	(Å ⁻²)				x 10 ⁵	(Å ⁻²)
110	1	1	1928	1930	631		[17	50149	50143
200	17	13	3861	3860	640	21	13		50180
101	60	∫ 35	7680	76 <i>82</i>	512	3	5	51958	51960
220	60	25	7716	7720	701	2	3	54006	54003
310	69	71	9649	9650	730	1	1		55970
211	60	49	11545	11542	442	0	0		57750
301	100	[89	15404	15402	721	1	2		57863
400	100	29		15440	532	22	21	59679	59680
330	33	24	17365	17370	103	2	3		61421
321	60	57	19263	19262	602	3	4	61657	61610
420	50	2		19300	800	4	2		61760
411	34	29	23117	23122	213	6	6	65278	65281
510	5	4	25089	25090	622		13		65470
002	32	22	26862	26869	651	07	[13	65576	65583
112	4	6	28818	28799	820	26	12		65620
202		9		30729	303	8	9	69144	69141
501	<i>c</i> 0	{ 25	200/1	100/1	811	10	[8	(0151	(0//2
431	62	26	50841	30843	741	10	1 5	69434	69443
440		0		30880	660		3		69481
530	31	34	32807	32810	750	4	5	71412	71411
222		2		34589	323	8	12	73004	73001
521	0.2	[20	34708	34703	712	,	(2	75120	75100
600	23	13		34740	552	4	14	/5130	/5120
312	27	23	36516	36519	413	-	0		76861
620	15	12	38601	38600	642		5		77050
402	2.2	[8	42327	42309	831	10	(15	77165	77163
611	33	1 18	42422	42423	840	19	1 3		77201
332	18	16	44240	44239	910	1	1	79105	79131
422	6	4	46179	46169	732	1	1	82832	82840
541	7	5	46277	46283	503		[10		
710	-	(4			433	11	4	84554	84581
550	5	$\begin{bmatrix} 1 \end{bmatrix}$	48240	48250	901	6	8	84899	84883

the more so for the mineral analogue crookesite [10] than for the stoichiometric synthetic product. The mineral has previously [11] even been given the composition $TlCu_9Se_5$ analogously to the sulphide. Thus, the same tetragonal model might be applicable.

Syntheses of the compositions "TlCu₇S₄" and "TlCu₉S₅" were per-

formed (620 K, 7 w.) followed by a renewed anneal (670 K, 4 w.). A film technique (*Guinier-Hägg*) was now utilized instead of the powder diffractometry of the original work that presented "TlCu₉S₅" [3]. It was confirmed that at that composition two phases are present, since very weak extra lines were detected on the powder film. These, belonging to

Fig. 2. The crystal structure of TlCu₂S₄ projected onto (001). Unfilled circles denote atoms at z = 1/4 and hatched ones atoms at z = 3/4 (ideally). Deviations from this occur for one of the copper sites (slightly different notation in the figure for the copper site where the occupancy is only 75% even for strict stoichiometry). In addition to the markings of the tetragonal cell (_____) and the coordination polyhedra (-___), the motif of the monoclinic cell of TlCu₃S₂ has been accentuated (- - - -)

 Cu_2S (djurleite), were hardly discernible from the background noise on a diffractometer recording from the same sample. Moreover, the main pattern was accurately indexed on a tetragonal cell similar to that of TlCu₇Se₄. At "TlCu₇S₄", the same pattern was found together with very weak lines of the neighbouring phases TlCu₃S₂ and Cu₂S.

While microprobe analyses on single crystals of $TlCu_7Se_4$ and crookesite [9, 10] yielded very good results, the analysis data on the corresponding almost single-phase sulphide were less satisfactory. The reproducibility was very low and the values were unreasonable. One plausible explanation is that the phases are heavily intergrown in the

from of lamellae with a separation smaller than the area probed by the electron beam [12]. Even if a single-phase area may be found at the sample surface, other phases interfere underneath.

The powder data are given in Table 1. Indications of a slight homogeneity range were found; the cell of a sample heated at 620 K is slightly smaller than that from the 670 K anneal. The effect is more pronounced for the *c*-axis which may be due to less copper, as found in the selenide [9, 10]. The density based on the new data is 6.46 g/cm^3 , now quite in line with expectations (Fig. 1). Moreover, the identity is established by intensity calculations based on the positional parameters of the isostructural NH₄Cu₇S₄ [13]. A conventional *R*-value of 13% was obtained, calculated on the summed powder intensities.

The structure is given in Fig. 2. Tl^+ (r = 1.47 Å) replaces NH_4^+ in a tetragonal pseudo-cubic prism of sulphur atoms. The interatomic distances TI-S are about 3.4 Å. This regular arrangement and high coordination number is rather different from the situation found in the binary thallium sulphides [14]. However, a similar "cubic" coordination occurs in other ternary thallium copper chalcogenides, such as TlCu₂Se₂ [15] and TlCu₄S₃ [16]. TlCu₂S₂ has not been prepared, but phases of composition TlFe_xS₂ (1.3 < x < 1.8) exist of the same structure type or with vacancy ordered superstructures [17, 18]. The Tl-S distances are 3.34 Å and 3.38 Å (distorted polyhedron) in TIFe_{1.5}S₂ [18] and 3.35 in TlCu₄S₃ [16]. The coordination number of eight for thallium proves it to be monovalent rather than trivalent. For the latter situation, a tetrahedral coordination, as it occurs for one of the thallium sites in Tl_4S_3 [19], would be expected. As in many other sulphides, copper coordinates either four (tetrahedron) or three (triangle, distorted tetrahedron), but is monovalent in both arrangements [20].

In the original determination [13], the copper atoms of the tetrahedral holes deviate from the ideal position of z = 1/4. This site is filled only to 75% to give the appropriate stoichiometry.

If the structure is idealized with atoms only at $z = 1/4 \pm 1/2$, one may discern similarities with other structures. For instance, the linking of the thallium-centred chalcogen cubes by help of tetrahedrally coordinated copper atoms is the same in TlCu₂Se₂ [15]. Areas with the same crystal chemistry as in TlCu₃S₂ [8] may also be found. The motif is accentuated in Fig. 2 in the form of TlCu₃S₂ "unit cells". However, the monoclinic *b*-axis has been reversed.

References

 Mamedov MS, Ali-Zade MZ, Zamanov SK, Aliev OM (1978) Inorganic Materials 14: 1194; translated from Izvest Akad Nauk SSSR Neorg Materialy 14: 1527

- 972 R. A. Berger and R. J. Sobott: Characterization of TlCu₇S₄
 - [2] Abishov VT, Babanly MB, Kuliev AA (1978) Izvest Vysh Ucheb Zaved Khim Khim Tekhnol 21: 630, quoted in Chem Abstr 89: 118535u
 - [3] Sobott R (1984) Monatsh Chem 113: 1397
 - [4] Babanly MB, Li Tai Un, Kuliev AA (1985) Russ J Inorg Chem 30: 587; translated from Zh Neorg Khimii 30: 1043
 - [5] Babanly MB, Li Tai Un, Kuliev AA (1985) Russ J Inorg Chem 30: 590; translated from Zh Neorg Khimii 30: 1047
 - [6] Babanly MB, Li Tai Un, Kuliev AA (1986) Russ J Inorg Chem 31: 1056; translated from Zh Neorg Khimii 31: 1837
 - [7] Gardes B, Brun G, Raymond A, Tedenac J-C (1979) Mat Res Bull 14: 943
 - [8] Klepp K, Yvon K (1980) Acta Crystallogr B 36: 2389
 - [9] Berger R (1987) J Solid State Chem 69: in press
- [10] Berger R (1987) Z Kristall, submitted
- [11] Kvacek M (1979) Acta Univ Carol Geol 1-2: 15
- [12] Ålinder C (1987) Geological survey of Sweden, Uppsala. Private comm
- [13] Gattow G (1957) Acta Crystallogr 10: 549
- [14] Nowacki W, Edenharter A, Engel P, Gostojic M, Nagl A (1982) On the crystal chemistry of some Thallium sulphides and sulphosalts. In: Amstutz GC, El Gorezy A, Frenzel G, Kluth C, Moh G, Wauschkuhn A, Zimmermann RA (eds) Ore genesis. The state of the art. Springer-Verlag, Berlin Heidelberg New York, p 689
- [15] Klepp K, Boller H (1978) Monatsh Chem 109: 1049
- [16] Klepp K, Boller H, Völlenkle H (1980) ibid 111: 727
- [17] Zabel M, Range K-J (1980) Rev Chim Min 17: 561
- [18] Sabrowsky H, Rosenberg M, Welz D, Deppe P, Schäfer W (1986) J Magn Magn Mater 54–57: 1497
- [19] Leclerc B, Bailly M (1973) Acta Crystallogr B 29: 2334
- [20] Jellinek F (1972) MTP international review of science, inorganic chemistry series 1, vol 5. Butterworths, London, p 339